Управление образования Администрации Богородского района Нижегородской области Муниципальное бюджетное образовательное учреждение Новинская средняя общеобразовательная школа

Учебная программа курса дистанционного обучения по физике

Избранные вопросы школьного курса физики при подготовке к ЕГЭ (решение задач)

Адрес:

607635, учитель физики

Нижегородская область, Кварталова Татьяна Федоровна

Богородский район

п. Новинки, ул. Центральная, д.6

Телефон: 8(83170)48541

Электронная почта:

nov-shkola@yandex.ru

п. Новинки2018 год

Оглавление

Пояснительная записка	2
Содержание программы	
Учебный план	
Учебно-тематический план	
Структура деятельности	9
Контролирующие материалы	
I. Введение	10
II. Кинематика	10
III. Динамика	13
IV. Законы сохранения	17
V. Молекулярная физика	20
VI. Основы термодинамики	
VII. Электродинамика	
VIII. Зачет	
Список литературы	

Пояснительная записка

Программа дистанционного курса «Избранные вопросы школьного курса физики при подготовке к ЕГЭ (решение задач)» предназначена для учеников 11 классов средних школ, изучающих физику на базовом уровне и желающих углубить свои знания в решении задач, в том числе для успешной сдачи ЕГЭ. При изучении курса учащиеся смогут повторить теоретический материал основных тем физики и закрепить его с помощью решения задач заданий части A, B, C.

Требуемый уровень подготовки учеников - знание материала по физике за курс 7-10 классов, владение основами сетевого взаимодействия и умение работать с необходимым программным обеспечением. Общий объем учебного времени составляет 36 учебных часов.

Теоретический и практический материал дистанционного курса является логическим продолжением, углублением и развитием школьного курса по физике.

Актуальность программы состоит в выборе дистанционного элективного курса, реализуемого за счет возможности составления индивидуального учебного плана и предназначенного для систематизации знаний по физике и подготовки учащихся к ЕГЭ.

Предложенная тематика и разный уровень сложности заданий позволят выпускникам средней школы самостоятельно проверить и оценить уровень своей подготовки.

Новизна курса по физике состоит в разработке очно-дистанционного формата и в части отбора задач для восполнения дефицита знаний и с учетом запросов, которые не могут быть решены в очной форме. Создаются условия для ликвидации перегрузки

школьников и обеспечения условий для развития их познавательных и творческих способностей при сохранении фундаментальности физического образования и усилении его практической направленности. Кроме того содержание курса наиболее актуально для данной категории учащихся: позволяет систематизировать и углубить знания, подготовиться к ЕГЭ по физике в индивидуальном темпе работы.

Основная цель курса: систематизировать и углубить знания по физике через решение задач разного уровня.

Задачи:

- 1. Формировать систему знаний по физике.
- 2.Совершенствовать умение решать задачи репродуктивного, прикладного и творческого характера.
 - 3.Способствовать формированию УУД.
 - 4. Обеспечить гибкость и индивидуализацию предлагаемого материала.

Планируемые результаты обучения:

Познавательные: ученик научится создавать и преобразовывать модели и схемы для решения задач;

осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий.

Регулятивные: уметь самостоятельно контролировать своё время и управлять им.

Коммуникативные: задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнёром.

Личностные: устойчивый познавательный интерес и становление смыслообразующей функции познавательного мотива.

Для поддержания постоянной обратной связи на протяжении всего периода обучения проводятся консультации через чаты и форумы.

Текущий контроль осуществляется посредством тестирования и выполнения проверочных работ по каждому учебному модулю.

Итоговая аттестация учащихся осуществляется письменной работой в формате ЕГЭ.

По окончании дистанционного курса учащиеся должны уметь решать задачи по разным разделам физики. Это, в свою очередь, поможет старшеклассникам грамотно подойти к выбору будущей профессии и специальности при поступлении в техникумы и ВУЗы, а также подготовит их к успешной сдаче ЕГЭ по физике.

Содержание программы

Введение (2 часа).

Физическая задача. Классификация задач и основные приемы их решения.

Кинематика (4 часа).

Задачи по кинематике равноускоренного прямолинейного движения материальной точки. Графические задачи по кинематике равномерного и равноускоренного движения. Решение задач, описывающих некоторые виды сложного движения.

Динамика (4 часа).

Задачи на применение законов Ньютона. Задачи на применение законов для сил тяготения, упругости и трения. Решение задач на движение тела под углом к горизонту, под действием нескольких сил, на применение законов динамики к движущимся телам.

Законы сохранения (6 часов).

Задачи на использование понятий импульса тела, изменение импульса тела и импульса силы. Задачи с использованием понятий работы, мощности, кинетической и потенциальной энергии. Задачи на законы сохранения и изменения механической энергии, определение мощности и КПД.

Молекулярная физика (4 часа).

Задачи на применение основного уравнения молекулярно-кинетической теории идеального газа и применение уравнения Менделеева-Клапейрона.

Основы термодинамики (6 часов).

Задачи на расчет количества теплоты в процессах теплопередачи. Задачи на составление уравнения теплового баланса. Решение комбинированных задач на первый закон термодинамики. Задачи на применение первого закона термодинамики к изопроцессам в газах. Решение задач на расчет КПД тепловых двигателей.

Электродинамика (6 часов).

Задачи на описание магнитного поля тока и его действия, электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений, закон электромагнитной индукции, правило Ленца, индуктивность, переменный электрический ток.

Зачет (4 часа).

Контрольная работа в формате ЕГЭ.

Учебный план

Основная цель курса: систематизировать и совершенствовать знания по физике через решение задач разного уровня.

Категория слушателей: ученики 11 класса

Количество учебных часов: 36

Режим обучения: очно-дистанционно, 8 занятий.

			в том числе			
Nº	Наименование разделов и тем	Всего часов	On- line	Off- line	Самост. работа	
I.	Введение.	2	1		1	
II.	Кинематика	4	1	2	1	
III.	Динамика.	4	1	2	1	
IV.	Законы сохранения.	6	1	3	2	
V.	Молекулярная физика.	4	1	1	2	
VI.	Основы термодинамики.	6	1	3	2	
VII.	Электродинамика.	6	1	3	2	
VIII.	Зачет	4	0,5		3,5	
	итого:	36	7,5	14	14,5	

Учебно-тематический план

Nº	Наименование разделов и тем	Всего	On - lin e	Off - lin e	числе Самос т. работа	Формы организации деятельности и контроля
I.	Введение.	2	0,5	0,5	1	
1.1	Физическая задача. Классификация задач и основные		0,5	0,5		Очное введение в курс

	приемы их решения.					Самостоятельное
						изучение учебных
						материалов
	Методы, способы и приемы					опрос
1.2	решения задач. Опрос «Как ты				1	
	понял эту тему?»					
II.	Кинематика	4	1	2	1	
	Основные понятия и формулы по					тест
2.1	теме «Механика». Общие правила		0,5	1	1	
	решения задач по кинематике.					
	Движение тела под углом к					Самостоятельное
2.2	горизонту. Графические задачи по			1		изучение учебных
2.2	кинематике равномерного и			1		материалов
	равноускоренного движения.					
	Решение задач, описывающих					контрольная
2.3	некоторые виды сложного		0,5		1	работа, чат, форум
	движения.					
III.	Динамика.	4	1	2	1	
3.1	Общие правила решения задач по		0.5	1		тест
3.1	динамике. Тест		0,5	1		
	Задачи на применение законов					Самостоятельное
3.2	Ньютона. Задачи на применение			1		изучение учебных
3.2	законов для сил тяготения,			1		материалов
	упругости и трения.					
	Решение задач на движение тела					Самостоятельное
3.3	под действием нескольких сил.			1		изучение учебных
	поо оеиствием нескольких сил.					материалов
	Решение задач на применение					контрольная
3.4	законов динамики к движущимся		0,5		1	работа, чат, форум
	телам.					
IV.	Законы сохранения.	6	1	3	2	
	Задачи на использование понятий					Самостоятельное
4.1			0,5	1,5		

	импульса тела и импульса силы.					материалов
	Задачи с использованием понятий					
	работы, мощности, кинетической					тест
	и потенциальной энергии.					
	Задачи на законы сохранения и					контрольная
4.2	изменения механической энергии,		0,5	1,5	2	работа, чат, форум
	определение мощности и КПД.					
V.	Молекулярная физика.	4	1	1	2	
5.1	Основные понятия и формулы по теме «Молекулярная физика»		0,5	0,5		тест
	Задачи на применение основного					Самостоятельное
	уравнения молекулярно-					изучение учебных
5.2	кинетической теории идеального		0,5	0,5	2	материалов
	газа и применение уравнения					контрольная
	Менделеева-Клайперона.					работа, чат, форум
VI.	Основы термодинамики.	6	1	3	2	
	Основные понятия и формулы по					Самостоятельное
<i>c</i> 1	теме «Термодинамика». Задачи		0.5	0.5		изучение учебных
6.1	на расчет количества теплоты в		0,5	0,5		материалов
	процессах теплопередачи.					тест
	Задачи на составление уравнения					Самостоятельное
	теплового баланса. Решение					изучение учебных
	комбинированных задач на первый					
	Romounupodannoix sada i na nepodia					материалов
6.2	закон термодинамики. Задачи на			2		материалов
6.2				2		материалов
6.2	закон термодинамики. Задачи на			2		материалов
6.2	закон термодинамики. Задачи на применение первого закона			2		материалов
	закон термодинамики. Задачи на применение первого закона термодинамики к изопроцессам в		0.5		2	материалов контрольная
6.2	закон термодинамики. Задачи на применение первого закона термодинамики к изопроцессам в газах.		0,5	0,5	2	-
	закон термодинамики. Задачи на применение первого закона термодинамики к изопроцессам в газах. Решение задач на расчет КПД	6	0,5		2 2	контрольная
6.3	закон термодинамики. Задачи на применение первого закона термодинамики к изопроцессам в газах. Решение задач на расчет КПД тепловых двигателей.	6	,	0,5		контрольная
6.3	закон термодинамики. Задачи на применение первого закона термодинамики к изопроцессам в газах. Решение задач на расчет КПД тепловых двигателей. Электродинамика.	6	,	0,5		контрольная работа, чат, форум

	магнитного поля тока и его действия.					тест
7.2	Задачи на описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Задачи на закон электромагнитной индукции, правило Ленца, индуктивность. Задачи на переменный электрический ток.			2		Самостоятельное изучение учебных материалов
7.3	Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи по геометрической оптике: зеркала, оптические схемы.	Δ	0,5	0,5	2	контрольная работа контрольная работа
VIII.	Зачет	4			4	в формате ЕГЭ
	итого:	36	7	14	15	

Структура деятельности

Учебная деятельность учеников организуется в следующих формах:

- самостоятельная работа по изучению теоретического и практического материала, представленного в разделе «Основные понятия и формулы», «Примеры решения задач по теме»;
- самостоятельная работа по выполнению практических заданий, на которых ученики осваивают приемы решения задач;
- контрольная работа выполнение контрольного задания с ответом в виде файла, уровень задания на выбор учащегося (1 уровень на «3», 2 уровень на «4», 3 уровень на «5»);
- итоговая работа (зачет) –выполнение контрольной работы в форме теста;
- заполнение электронных форм опросов и анкет.

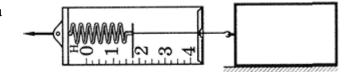
В учебной деятельности преподавателя дистанционного курса можно выделить следующие составляющие:

- **организация промежуточного контроля учебной деятельности** посредством интерактивного тестирования учеников через виртуальную среду обучения и проверки контрольных работ с ответом в виде файлов;
- отслеживание и публикация текущей успеваемости учеников посредством заполнения и постоянного обновления электронного журнала успеваемости учебной группы, представленного в дистанционной оболочке;
- электронные консультации (в режиме off-line) разрешение возникающих проблем посредством индивидуального консультирования учащихся через форумы и on-line через чаты;
- отслеживание результатов посещаемости, учебной деятельности и успеваемости учеников,
- аналитическая деятельность.

Контролирующие материалы

(тест и контрольная работа с выбором уровня выполнения в каждом модуле)

І. Введение.

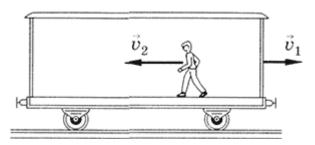

Опрос «Как ты понял эту тему?»

- Материал изложен доступно и понятно.
- Материал изложен недоступно и непонятно.
- Материал показался трудным для усвоения.

II. Кинематика.

Тест по теме Кинематика

А1 Под действием пружины динамометра брусок движется равномерно по поверхности стола. По показаниям

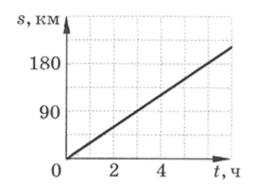

динамометра разные ученики могут записать следующие значения действующей силы.

Какая запись наиболее правильная?

А. 1,5 Н В. 1,75 Н С. 1,55 Н Д. 2 Н

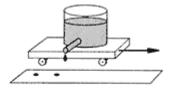
A2

В вагоне едущего со скоростью $V_1 = 1$ м/с поезда навстречу движению идет пассажир со скоростью $V_2 = 1,5$ м/с. Чему равна по модулю и куда направлена скорость пассажира для людей, стоящих на платформе?



А. 0,5 м/с; вправо В. 2,5 м/с; вправо С. 0 Д. 0,5 м/с; влево

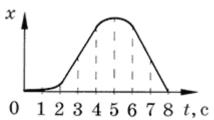
A3


На рисунке приведен график зависимости пройденного автобусом расстояния от времени поездки. Какова скорость движения автобуса?

А. 30 км/ч В. 60 км/ч С. 90 км/ч Д. 180 км/ч

А4 На рисунке δ изображены результаты опытов с капельницей, установленной на движущейся тележке (рис. a). Капли падают через одинаковые промежутки времени. В

каком из опытов сумма всех сил, действующих на тележку, равнялась нулю? *а*)



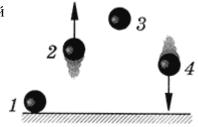
А. в опыте 1 В. в опыте 2 С. в опыте 3 Д. в опыте 4

А5 Легкоподвижную тележку массой 3 кг толкают силой 6 Н. Каково ускорение, сообщаемое тележке? А. 18 м/с 2 В. 2 м/с 2 С. 1,67 м/с 2 Д. 0,5 м/с 2

A6

На рисунке представлен график изменения координаты тела с течением времени. В какие промежутки времени на тело действовала сила?

А. от 1 до 8 с

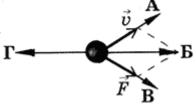

В. от 1 до 2 с и от 4 до 6 с

С. от 2 до 4 с и от 6 до 8 с

Д. во все промежутки времени от 0 до $8\ c$

A7

В некоторый момент времени один мяч лежит на земле, второй летит вверх, третий завис в верхней точке траектории, а четвертый падает вниз. На какой из мячей действует сила тяжести в этот момент?



А. только на мяч 1 В. только на мячи 2 и 4

С. только на мяч 3 Д. на все мячи

A8

Мяч движется со скоростью V. На мяч действует сила F так, как показано на рисунке. Какая из стрелок (A- Γ) соответствует направлению импульса p мяча?

А. Б. В. Г.

Ответы:

A 1	В
A 2	Д
A 3	C
A 4	C
A 5	В
A 6	В
A 7	Д
A 8	A

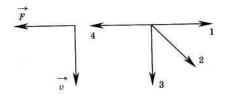
Контрольная работа по теме «Кинематика»

1 уровень.

- 1. Пуля вылетает из дула винтовки со скоростью 100 м/с, двигаясь равноускоренно без начальной скорости. Чему равна скорость пули в середине ствола?
- 2. За 2 с тело, двигавшееся из начала координат равноускоренно без начальной скорости, приобрело скорость 6 м/с. Запишите уравнение его координаты.
- 3. Тело свободно падает с высоты 5 м без начальной скорости. Чему равна его скорость в момент падения на землю?
- 4. На первом этаже многоэтажного дома постучали по трубе водяного отопления. Скорость звука в металле, из которого изготовлена труба, равна 6000 м/с. Через какой промежуток времени звук дойдет по трубе до верхнего этажа, расположенного на 60 м выше первого
- 5. Мяч брошен вертикально вверх со скоростью 30 м/с. Через сколько секунд он достигнет максимальной точки подъема? (Сопротивление воздуха не учитывайте.)
- 6. Тело, находящееся в точке В на высоте 45 м от Земли, начинает свободно падать. Одновременно из точки А, расположенной на расстоянии 21 м ниже точки Б, бросают другое тело вертикально вверх. Определить начальную скорость второго тела, если известно, что оба тела упадут на Землю одновременно. Сопротивлением воздуха пренебречь.

- 1. Какую скорость имеет в высшей точке траектории снаряд. вылетевший из ствола орудия со скоростью 120 м/с под углом 60° к горизонту?
- 2. Тело свободно падает с высоты 10 м без начальной скорости. Через сколько времени оно окажется на вдвое меньшей высоте?
- 3. Тело брошено вверх с начальной скоростью 6 м/с. Сопротивление не учитывать. Через сколько времени его скорость уменьшится на 40 %?
- 4. Человек, идущий вниз по опускающемуся эскалатору, затрачивает на спуск 1 минуту. Если человек будет идти вдвое быстрее, он затратить на 15 секунд меньше. Сколько времени он будет спускаться, стоя на эскалаторе?
- 5. Два автомобиля выходят из одного пункта в одном направлении. Второй автомобиль выходит на 20 с позже первого. Оба движутся равноускоренно с одинаковым ускорением 0,4 м/с2. Через сколько времени, считая от начала движения первого автомобиля, расстояние между ними окажется 240 м?
- 6. С крыши дома высотой 8 м через одинаковые промежутки времени падают капли воды, причем первая ударяется об землю тогда, когда пятая отрывается от крыши. Определить расстояния между каплями в момент, когда первая капля ударяется о землю

3 уровень


- 1. Самолет, имея скорость 360 км/ч, летел через пункт A в пункт B и обратно в пункт C, расположенный на равном удалении от A и B. Время полета от B до C составило 30 мин. Принимая скорость ветра в направлении от A к B равной 72 км/ч, определите среднюю скорость самолета за все время полета, путь за все время полета и перемещение.
- 2. Два тела, находящиеся на высоте 20 м от поверхности земли, брошены с интервалом 1 с вертикально вверх с начальной скоростью 10 м/с. Сколько пройдет времени до момента встречи этих тел? Через какое время после бросания первое тело упадет на землю и с какой скоростью?
- 3. Свободно падающее тело за последнюю секунду прошло половину пути. Определите время падения на землю, высоту падения и скорость приземления.

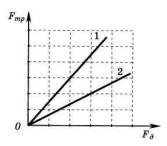
III. Динамика.

Тест по теме «Динамика»

- 1. Какая из характеристик движения тела не меняется при переходе от одной инерциальной системы отсчета к другой?
 - 1) ускорение 2) траектория 3) перемещение 4) кинетическая энергия

- 2. Систему отсчета, связанную с Землей, будем считать инерциальной. Система отсчета, связанная с автомобилем, тоже будет инерциальной, если автомобиль
 - 1) движется равномерно по прямолинейному участку шоссе
 - 2) разгоняется по прямолинейному участку шоссе
 - 3) движется равномерно по извилистой дороге
 - 4) по инерции вкатывается на гору
- 3. Брусок лежит на шероховатой наклонной опоре (см. рисунок). На него действуют 3 силы: сила тяжести mg , сила упругости опоры N и сила трения Fтр. Если брусок покоится, то модуль равнодействующей сил Fтр и N равен $\overrightarrow{F}_{F_{pp}}$ \overrightarrow{N}
 - 1) **mg**
 - 2) FTp+N
 - 3) Ncosa
 - 4) Fτpsinα
- 4. Легкоподвижную тележку массой m=3 кг толкают с силой F=6 H . Ускорение тележки в инерциальной системе отсчета равно
 - 1) 18 m/c^2 2) 2 m/c^2 3) $1,67 \text{ m/c}^2$ 4) $0,5 \text{ m/c}^2$
- 5. На левом рисунке представлены вектор скорости и вектор равнодействующей всех сил, действующих на тело. Какой из четырех векторов на правом рисунке указывает направление вектора ускорения этого тела в инерциальных системах отсчета?
- 1) 1. 2)2. 3) 3. 4)4.

- 6. Космический корабль движется вокруг Земли по круговой орбите радиусом $2 \cdot 10^7$ м. Его скорость равна
 - 1) 4,5 km/c 2) 6,3 km/c 3) 8 km/c 4) 11 km/c
- 7. При свободном падении ускорение всех тел одинаково. Этот факт объясняется тем, что
 - 1) Земля имеет очень большую массу
 - 2) все земные предметы очень малы по сравнению с Землей
 - 3) сила тяжести пропорциональна массе Земли
 - 4) сила тяжести пропорциональна массе тела
- 8. Под действием силы 3 Н пружина удлинилась на 4 см. Чему равен модуль силы, под действием которой удлинение этой пружины составит 6 см?


9. Под действием груза пружина удлинилась на 1 см. Этот же груз подвесили к пружине с вдвое большей жесткостью. Удлинение пружины стало равным

10. К подвижной вертикальной стенке приложили груз массой 10 кг. Коэффициент трения между грузом и стенкой равен 0,4. С каким минимальным ускорением надо передвигать стенку влево, чтобы груз не соскользнул вниз?

1)
$$0.04 \text{ m/c}^2$$
 2) 4 m/c^2 3) 25 m/c^2 4) 250 m/c^2

11. На рисунке представлены графики зависимости силы трения от силы нормального

давления для двух тел. Отношение $\frac{\mu_1}{\mu_2}$ коэффициентов трения скольжения равно

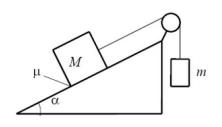
12. Книга лежит на столе. Масса книги 0,6 кг. Площадь ее соприкосновения со столом $0,08~\text{m}^2$. Давление книги на стол равно

1) 75 Па 2) 7,5 Па 3) 0,13 Па 4) 0,048 Па

Контрольная работа по теме «Динамика»

1 уровень.

- 1. Двое мальчиков тянут шнур в противоположные стороны, каждый с силой 200 H. Разорвется ли шнур, если он может выдержать нагрузку 300 H?
- 2. Паровоз толкнул вагон массой 30 т, стоящий на горизонтальном пути. Вагон начал двигаться со скоростью 0,5 м/с. Определите силу удара, если его длительность 1 с.
- 3. Найти удлинение буксирного троса жесткостью 100 кH/м при буксировке автомобиля массой 2 т с ускорением 0,5 м/с2. Трением пренебречь.
- 4. Состав какой массы может привести в движение электровоз массой 180 т, если коэффициент трения скольжения колес о рельсы равен 0,2, а коэффициент сопротивления качению поезда равен 0,006?


- 1. Найти начальную скорость тела массой 600 г, если под действием силы 8 H на расстоянии 120 см оно достигло скорости 6 м/с
- 2. Лыжник массой 60 кг, имеющий в конце спуска скорость 10 м/с, остановился через 40 с после окончания спуска. Определить величину силы сопротивления.
- 3. Тело подняли на высоту 1600 км над поверхностью Земли. На сколько процентов уменьшилась сила тяготения, действующая на тело?
- 4. Период обращения Луны вокруг Земли равен 27 суток. Считая орбиту Луны окружностью, определите ее радиус.

3 уровень

- № 1. Лыжник массой 60 кг спустился с горы высотой 20 м. Какой была сила сопротивления его движению по горизонтальной лыжне после спуска, если он остановился, проехав 200 м? Считать, что по склону горы он скользил без трения. (отв. 60 Н)
- № 2. Автомобиль массой 1,5 т трогается с места, двигаясь равноускоренно 200 м. Определите максимальную скорость, если сила тяги двигателя 1,5 кН. Каким будет тормозной путь при выключенном двигателе и сколько пройдет времени на прохождение этого пути? Примите ускорение свободного падения g = 10 м/с2. Коэффициент трения равен 0,2. (ответ: 20 м/с, 100м, 10 с)

№ 3. (отв. 0,76 кг)

Грузы массами M=1 кг и m связаны легкой нерастяжимой нитью, переброшенной через блок, по которому нить может скользить без трения (см. рис). Груз массой M находится на шероховатой наклонной плоскости (угол наклона плоскости к горизонту $\alpha=30^{\circ}$, коэффициент трения $\mu=0,3$). Чему равно максимальное значение массы m, при котором система грузов

еще не выходит из первоначального состояния покоя? Решение поясните рисунком с указанием используемых сил.

№ 4. (отв. 90 H)

Санки можно удержать на горке с углом наклона $\alpha = 30^{\circ}$ минимальной силой F=60H, направленной вдоль горки. Предоставленные самим себе, они скатываются с ускорением $a = 4 \text{ m/c}^2$. Какую минимальную силу F_1 , направленную вдоль горки, нужно приложить к санкам, чтобы тянуть их в горку с постоянной скоростью? Ускорение свободного падения принять равным $g = 10 \text{ m/c}^2$.

IV. Законы сохранения.

Тест по теме « Законы сохранения в механике»

- 1. Движение тела массой 3 кг задано уравнением $x = 3 + 4t + 2t^2$. Чему равна проекция импульса тела на ось ОХ в момент времени 3 с?
- 1) 16 κΓ·м/c **2) 48 κΓ·м/c** 3) 32 κΓ·м/c 4) 96 κΓ·м/c
- 2. Чему равен модуль изменения импульса шара массой 2 m, движущегося со скоростью υ после абсолютно неупругого столкновения со стенкой?
- 1) 0 2) mv 3) 2 mv 4) 4 mv
- 3. При выстреле из пневматической винтовки вылетает пуля массой m со скоростью v. Какой по модулю импульс приобретает после выстрела винтовка, если её масса в 150 раз больше массы пули?
- 1) 0 **2) mv** 3) 150 mv 4) mv/150
- 4. Неподвижное атомное ядро массой М испускает частицу массой m, движущуюся со скоростью υ, и отлетает в противоположном направлении. Какой по модулю импульс приобретет при этом ядро?
- 1) 0 **2)** mv 3) (M+m)v 4) Mv
- 5. Велосипедист, движущийся со скоростью 5 м/с наклоняется и подхватывает лежащий на земле рюкзак массой 10 кг. Какой станет скорость велосипедиста, если его масса с велосипедом 90 кг?
- 1) 4.5 m/c 2) 5 m/c 3) 3 m/c 4) 2.5 m/c
- 6. Лошадь перемещает сани с грузом на расстояние 2 км, прилагая усилие 700 H. Определите совершенную при этом работу, если направления перемещения и силы составляют угол 30° .
- 1) 1,4 МДж **2) 1,2 МДж** 3) 0,7 МДЖ 4) 2,9 МДж
- 7. Определите работу, которую должен совершить двигатель подъёмника, чтобы поднять груз массой 50 кг на высоту 10 м за 5 с.
- 1) 400 Дж **2) 5000** Дж 3) 5400 Дж 4) 9000 Дж
- 8. Какую работу совершает человек, поднимающий груз массой 2 кг на высоту 1,5 м с ускорением 3 м/c^2 .
- 1) 39 Дж 2) 30 Дж 3) 19 Дж 4) 10 Дж
- 9. С какой скоростью должна лететь бронебойная пуля массой 150 г, чтобы обладать кинетической энергией 6,75 кДж?
- 1) 300 m/c 2) 900 m/c 3) 90 m/c 4) 10 m/c

- 10. Какую работу должен совершить человек, чтобы увеличить скорость своего бега с 3,6 км/ч до 7,2 км/ч? Масса человека 60 кг.
- 1) 116 Дж 2) 64 Дж 3) 90 Дж 4) 120 Дж
- 11. Металлическая цепь, имеющая массу 2 кг и длину 10 м, свисает в колодец. Какую работу надо совершить при её подъеме вверх на поверхность земли?
- 1) 200 Дж 2) 100 Дж 3) 20 Дж 4) 10 Дж
- 12. Как изменится потенциальная энергия упругой пружины, если её абсолютное удлинение увеличится в три раза?
- 1) уменьшится в 3 раза 2) увеличится в 3 раза
- 3) уменьшится в 9 раз 4) увеличится в 9 раз

Контрольная работа по теме « Законы сохранения в механике»

1 уровень.

- 1. Молекула массой 510 ⁻²⁶ кг, летящая со скоростью 500 м/с, упруго ударяется о стенку под углом 30° к перпендикуляру. Найти импульс силы, полученный стенкой при ударе.
- 2. До какой высоты поднялся при бросании мяч, если его потенциальная энергия относительно Земли на этой высоте оказалась равной 60 Дж? Масса мяча 300 г.
- 3. Определите величину деформации пружины при растяжении, если ее потенциальная энергия стала равной 1 Дж, а под действием силы 3 Н пружина удлиняется на 1 см.
- 4. Цирковой артист массой 60 кг падает в натянутую сетку с высоты 4 м. С какой силой действует на артиста сетка, если ее прогиб равен 1м?
- 5. Предмет массой 5 кг вращается на нити в вертикальной плоскости. На сколько сила натяжения нити в нижней точке больше, чем в верхней?

- 1. Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой' 10 т и застревает в нем. Найти скорость вагона, если он двигался со скоростью 36 км/ч навстречу снаряду.
- 2. Ледокол массой 5000 т, идущий с выключенным двигателем со скоростью 10 м/с наталкивается на неподвижную льдину и движет ее впереди себя. Скорость ледокола уменьшилась при этом до 2 м/с. Определите массу льдины. Сопротивлением воды пренебречь.
- 3. Камень бросили под углом 60° к горизонту со скоростью 15 м/с. Найти кинетическую и потенциальную энергию камня через 1 с после начала движения. Сопротивлением воздуха пренебречь. Масса камня 0,2 кг.

- 4. Определить кинетическую энергию тела массой 1 кг, брошенного горизонтально со скоростью 20 м/с, в конце четвертой секунды его движения.
- 5. Тело массой 1 кг движется по столу, имея в начальной точке скорость 2 м/с. Достигнув края стола, высота которого 1 м, тело падает. Коэффициент трения тела о стол 0,1. Определить количество теплоты, выделившееся при неупругом ударе о землю. Путь, пройденный телом по столу, 2 м.

3 уровень

- № 1. Пуля массой m1=5 г, летящая горизонтально со скоростью v= 500 м/c, попадает в шар массой m 2 = 0.5 кг, подвешенный на невесомой нерастяжимой нити, и застревает в нем. При какой предельной длине нити (расстояние от точки подвеса до центра шара) шар от удара пули сможет описать четверть окружности? Сопротивлением воздуха пренебречь. Ответ: 1.25 м
- № 2. Пуля массой m1=10 г, летящая горизонтально, абсолютно упруго соударяется с шаром массой m2=6 кг, подвешенный на легком стержне длиной 1 м, и отскакивает в противоположном направлении. В результате удара шар отклоняется от вертикали на угол 400. Найти скорость пули до и после удара. Массой стержня пренебречь.

Ответ: 631 м/с и 629 м/с

- №3. Лодка стоит неподвижно в стоячей воде. Человек, находящийся в лодке, переходит с носа на корму. На какое расстояние переместится лодка, если масса человека 60кг., масса лодки 120 кг., длина лодки 3м.? Сопротивление воды не учитывать. Ответ 1м.
- №4. Пружина жесткостью 1000 H/м растянута на 6 см. Какую работу нужно совершить, чтобы растянуть эту пружину дополнительно еще на 8 см? Ответ: 8 Дж
- №5. Тело свободно падает без начальной скорости с высоты H м. На какой высоте его кинетическая энергия будет вдвое больше потенциальной? За нулевой уровень потенциальной энергии принять поверхность земли. Сопротивление воздуха не учитывать. Ответ: h=H/3
- №6 Тело брошено под углом а к горизонту со скоростью V0. Не учитывая сопротивление воздуха, определить скорость тела в тот момент, когда оно находится на высоте h над горизонтом. Ответ:
- №7. В деревянный брусок, лежащий на гладкой горизонтальной поверхности, попадает пуля массой 10 г и застревает в нем. В результате брусок приходит в движение со скоростью 10 м/с. До попадания в брусок пуля двигалась под углом 600 к горизонту со скоростью 420 м/с. Определите массу бруска. Ответ: 200 г

- №8. Тележке массой 2,5 кг, стоящей на полу и соединенной со стеной не деформированной пружиной жесткостью k=60 H/м, сообщается скорость 2 м/с перпендикулярно стене. Найдите кинетическую энергию тележки, когда она пройдет расстояние 0,25 м. Ответ округлить до десятых долей. Ответ 3,1 Дж
- №9. С вертолета, находящегося на высоте 30 м, сбрасывают груз. Вертолет при этом равномерно опускается вниз со скоростью 5 м/с. За какое время груз упадет на землю?

Ответ: 2 с

№10. На горизонтальной поверхности лежит тело. На тело действуют с силой 20 H, направленной вверх под углом 300 к горизонту. Под действием этой силы тело равномерно переместилось на 5 м. Какую потенциальную энергию приобрело тело относительно горизонтальной поверхности? Ответ: 86,6 Дж

V. Молекулярная физика.

Тест по теме «Молекулярная физика»

- 1. Плотность вещества $2*10^3~{\rm кг/м3}$, масса одной молекулы $5*10^{-27}~{\rm кг}$. Концентрация молекул в нем равна
- 1) $1*10^{27}$ m⁻³; 2) $2.5*10^{24}$ m⁻³; 3) $4*10^{29}$ m⁻³; 4) $3*10^{30}$ m⁻³;
- 2. Количество молекул в 50 молях вещества равно:
- 1) $3*10^{25}$; 2) $2.5*10^{25}$; 3) $1.5*10^{23}$; 4) $5*10^{22}$;
- 3. В баллон объемом 3 л впустили 2 л водорода, 5 л кислорода и 4 л азота. Объем смеси газов стал равен
- 1) 5 л; 2) 2 л; 3) 3 л; 4) 11 л.
- 4. При температуре 27° С средняя кинетическая энергия молекул газа примерно равна
- 1) $6.2*10^{-21}$ Дж; 2) $2.7*10^{-21}$ Дж; 3) $2*10^{-23}$ Дж; 4) $5.3*10^{-23}$ Дж;
- 5. Давление газа 2*105 Па, концентрация молекул $1,5*10^{25}$ м⁻³. Средняя кинетическая энергия молекул равна:
- 1) $3*10^{-19}$ Дж 2) $2*10^{-20}$ Дж; 3) $5*10^{-22}$ Дж; 4) $4-10^{-15}$ Дж.
- 6. Температуру идеального газа увеличили в 4 раза. При этом средняя квадратичная скорость его молекул:
- 1) увеличилась в 4 раза; 2) уменьшилась в 2 раза;
- 3) увеличилась в 2 раза;4) уменьшилась в 4 раза.
- 7. Газ объемом 5 л находится при давлении 0.6 МПа. Каким станет давление газа, если, не меняя его температуру, увеличить объем на 20 %?
- 1) 0,2 MПa; 2) 0,3 МПa; 3) 0,5 МПa; 4) 0,12 МПa.

- 8. Под поршнем массой 2 кг с площадью основания 5 см² находится газ. Поршень в покое. Атмосферное давление нормальное. Давление газа под поршнем равно:
- 1) 200 κΠΑ; 2) 80 κΠΑ; 3) 100 κΠΑ; 4) 40 κΠα.
- 9. В закрытом сосуде находится газ под давлением 200 кПА. Каким станет давление газа, если температуру повысить на 30 %?
- 1) 170 κΠΑ; 2) 260 κΠΑ; 3) 320 κΠΑ; 4) 400 κΠΑ.
- 10. Абсолютная температура и объем данной массы идеального газа увеличились в 3 раза. При этом его давление:
- 1) увеличилось в 3 раза; 2) увеличилось в 9 раз;
- 3) уменьшилось в 3 раза; 4) не изменилось

Контрольная работа по теме «Молекулярная физика»

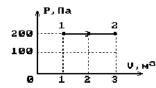
1 уровень.

- 1. За 5 суток полностью испарилось $5\cdot 10^{-2}$ кг воды. Сколько в среднем молекул вылетало с поверхности воды за 1 с?
- 2. В 1 м^3 газа при давлении 1,5·10⁵ Па содержится 2·10²⁵ молекул. Определите среднюю кинетическую энергию хаотического движения этих молекул.
- 3. В баллоне при 27°С и давлении 4,05 МПа находится ацетилен. Каким станет давление в баллоне после расхода половины массы газа, если температура при этом понизится до 12°С?
- 4. В цилиндре под поршнем площадью 100 cm^2 находится 28 г азота при температуре 273 K. Цилиндр нагревается до температуры 373 K. На какую высоту поднимается поршень массой 100 кг? Атмосферное давление 10^5 Па .
- 5. Расстояние между центрами соседних атомов золота равно 2,9·10⁻¹⁰ м. Сколько атомов уложится по толщине листочка золота толщиной 0,1 мкм?
- 6. Молекула азота при нормальных условиях движется со скоростью 454 м/с. Определите импульс молекулы.

- 1. Озеро со средней глубиной 5 м и площадью 4 км² "посолили", бросив кристаллик поваренной соли массой 10 мг. Спустя длительное время из озера зачерпнули стакан воды объемом 200 см³. Сколько ионов натрия оказалось в этом стакане?
- 2. После того как в комнате включили электрокамин, температура воздуха повысилась от 17 до 22 °C при неизменном давлении. На сколько процентов уменьшилось число молекул воздуха в комнате?

- 3. Баллон с гелием при давлении p_1 =1,5·10⁶ Па и температуре -3 °C имеет массу 21 кг, а при давлении $p_2 = 2 \cdot 10^6$ Па и той же температуре массу 20 кг. Какую массу гелия содержит баллон при давлении $p = 1,5 \cdot 10^7$ Па и температуре 27°C?
- 4. После того, как в комнате протопили печь, температура поднялась с 15 °C до 27 °C. На сколько процентов изменилось число молекул в этой комнате?
- 5. В цилиндре под поршнем площадью 100 cm^2 находится 28 г азота при температуре 273 K. Цилиндр нагревается до температуры 373 K. На какую высоту поднимается поршень массой 100 кг? Атмосферное давление 10^5 Па .
- 6. Открытую с двух сторон стеклянную трубку длиной 1 м наполовину погружают в ртуть. Затем трубку закрывают сверху и вынимают. Какой длины х столбик ртути останется в трубке? Атмосферное давление p = 750 мм. рт. ст.

- 1. Два одинаковых сосуда, соединенные трубкой, содержат идеальный газ общей массой m=6,6 г. Первоначально температура газа в обоих сосудах одинакова. Затем газ в первом сосуде нагревают и поддерживают при температуре $t_1=27^0$ С, а газ во втором сосуде нагревают и поддерживают при температуре $t_2=87^0$ С. На какую величину Δm изменится масса газа в первом сосуде? Объем трубки не учитывать. (отв. 0,3 г)
- 2. В горизонтально расположенной трубке постоянного сечения, запаянной с одного конца, помещен столбик ртути длиной 1 =15 см, который отделяет воздух в трубке от атмосферы. Трубку расположили вертикально запаянным концом вниз и нагрели на $\Delta T = 60$ К. При этом объем, занимаемый воздухом, не изменился. Давление атмосферы в лаборатории составляет $p_0 = 750$ мм. рт. ст. Какова температура воздуха в лаборатории? (ответ T = 300 К)
- 3. Вертикально расположенный замкнутый цилиндрический сосуд разделен на две части подвижным поршнем. В обеих частях сосуда содержится один и тот же идеальный газ. Расстояние между поршнем и дном сосуда H_1 = 30 см. Сосуд переворачивают так, что дном становится его верхняя плоскость. В новом положении расстояние между дном сосуда и поршнем составляет H_2 = 20 см. Найти отношение α массы газа, содержавшегося в той части сосуда, которая первоначально находилась вверху, к массе газа, содержавшегося в другой части сосуда. Высота сосуда L = 60 см. Температуру считать постоянной, толщиной поршня пренебречь. (отв. α = 0,7)
- 4. В стеклянную банку объемом 1 л налили 0,5 л воды при температуре $t_1 = 200~^{0}$ С и герметично закрыли завинчивающейся крышкой. Затем банку нагрели до температуры $t_2 = 100~^{0}$ С. Найти силу взаимодействия между банкой и крышкой при достижении этой

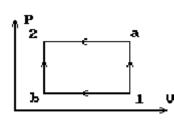

температуры. Площадь крышки $S = 50 \text{ см}^2$, атмосферное давление $p_0 = 10^5 \text{ Па.}$

Влажностью атмосферного воздуха, а также массой крышки пренебречь.(отв. F = 640H)

VI. Основы термодинамики.

Тест по теме «Термодинамика»

- 1. Какие виды энергии входят во внутреннюю энергию тела?
- 1). Потенциальная и кинетическая энергия тела.
- 2). Потенциальная энергия тела и кинетическая энергия молекул тела.
- 3). Кинетическая энергия тела и потенциальная энергия взаимодействия молекул тела.
- 4). Кинетическая энергия молекул и потенциальная энергия взаимодействия молекул тела.
- 2. Как изменится внутренняя энергия идеального газа при его изотермическом сжатии?
- 1). Увеличится. 2). Уменьшится. 3). Не изменится.
- 3. На сколько увеличится внутренняя энергия идеального одноатомного газа, если 2/3 моля этого газа нагреть на 100 К? R = 8.31 Дж/(кг*моль)
 - 1). На 83,1 Дж. 2). На 166,2 Дж. 3). На 831 Дж. 4). На 1662 Дж.
- 4. На рисунке показан переход идеального газа из состояния 1 в состояние 2. Чему равна работа совершенная газом?


- 1). 400 Дж. 2). 600 Дж.
- 3). 400 Дж. 4). 600 Дж.
- 5. На рисунке показан переход идеального газа из состояния 1 в состояние 2. Чему равна работа совершенная газом?

- 1). 4 Дж.
- 4). 0 Дж. 3). 20 Дж.
- 6. Идеальный газ, расширяясь адиабатически, совершил работу в 200 Дж.

Что произошло при этом с температурой газа?

- 1). Газ нагрелся. 2). Газ охладился. 3). Температура газа не изменилась.
- 7. Идеальный газ переведен из состояния 1 в состояние 2 двумя способами:

- 1) $1 \rightarrow a \rightarrow 2$
- 2) $1 \rightarrow b \rightarrow 2$.

В каком случае была совершена большая работа?

- 1). В первом.
- 2). Во втором.

2). 16 Дж.

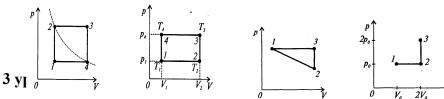
- 3). В обоих случаях одинаковая.
- 8. Какую работу совершают 0,5 моль водорода при изобарном нагревании на 200 К? R = 8,31 Дж/(Моль*К)
- 1). 83,1 Дж.

- 2). 169,2 Дж. 3). 831 Дж. 4). 1692 Дж.

- 9. Для получения воды с температурой 40 градусов к 5 кг кипятка при 100 град.С добавили холодную воду, имеющей температуру 10 град.С. Сколько холодной воды было добавлено?
- 1). 5 кг. 2). 10 кг. 3). 15 кг. 4). 20 кг.
- 10. На что расходуется энергия, подводимая к жидкости во время кипения?
- 1). На повышение температуры жидкости. 2). На парообразование.
- 11. Тающий лед принесли в помещение, температура в котором 0 град С. Будет ли лед в этом помещении продолжать таять ?
- 1). Да. 2). Нет.
- 12. Сколько воды можно нагреть от 0 до 100 градусов, количеством теплоты, выделившимся при сгорании 1 кг дизельного топлива? Удельная теплота сгорания дизельного топлива 42000 кДж/кг. Удельная теплоемкость воды 4200 Дж/кг*град.
- 1). 1 кг. 2). 10 кг. 3). 100 кг. 4). 1000 кг.
- 13. Можно ли охладить воздух в кухне, если дверцу холодильника оставить открытой?

 1). Да. 2). Нет.
- 14. Вода падает с высоты 42 м. На сколько градусов повысилась бы ее температура, если бы вся ее потенциальная энергия пошла на нагревание воды? $g = 10 \text{ м/c}^2$, c = 4200 Дж/(кг*K)
- 1). 0,1 K. 2). 10 K. 3). 10 K.
- 15. Газу передано количество теплоты 100 Дж и внешние силы совершили над ним работу в 300 Дж. Чему равно изменение внутренней энергии газа?
- 1). 200 Дж. 2). 200 Дж. 3). 400 Дж.
- 16. В каком процессе при расширении идеального газа количество теплоты, переданное газу, равно работе, совершенной этим газом?
- 1). В изохорическом. 2). В изобарическом.
- 3). В изотермическом. 4). В адиабатическом.
- 17. Каков максимальный КПД может быть у тепловой машины с температурой нагревателя 100 К и температурой холодильника 300 К?
- 1). 100 %. 2). 90 % . 3). 70 % . 4). 30 % .
- 18. Идеальная тепловая машина за цикл получает от нагревателя 500 Дж теплоты и отдает холодильнику 200 Дж. Чему равен ее КПД?
- 1). 40 % . 2). 60 % . 3). 80 % . 4). 100 % .

Контрольная работа по теме «Термодинамика».


1 уровень

1. При изобарном нагревании на 159 К газом, масса которого 3,47 кг, была совершена работа 144 кДж. Определить молярную массу газа и назвать его.

- 2. В цилиндре под поршнем находится кислород. Определить массу кислорода, если известно, что работа, совершаемая при нагревании газа от 273 до 473 K, равна 16 кДж. Трение не учитывать.
- 3. Один килограмм углекислого газа CO₂ изобарно нагрет от 268 до 400 К. Определить работу, совершенную газом при увеличении его объема.
- 4. Для нагревания 10 г неизвестного газа на 1К при постоянном давлении требуется 9,12 Дж, при постоянном объеме 6,49 Дж. Что это за газ?
- 5. При изобарном расширении 80 г кислорода с температурой 300 К его объем увеличился в 1,5 раза. Определить количество теплоты, израсходованной на нагревание кислорода, работу совершенную для его расширения, и изменение внутренней энергии газа.
- 6. Кислород массой 0,3 кг при температуре T=320К охладили изохорно, вследствие чего его давление уменьшилось в 3 раза. Затем газ изобарно расширили так, что температура его стала равна первоначальной. Какую работу совершил газ? Как изменилась его внутренняя энергия?

- 1. Один моль идеального газа совершает замкнутый процесс, состоящий из двух изохор и двух изобар. Температура в точке 1 равна Т1, точке 3 Т3. Определить работу, совершаемую газом за цикл, если точки 2 и 4 лежат на одной изотерме. (см. рис.1)
- 2. Один моль идеального газа находится в цилиндре под поршнем при температуре T₁. Газ при постоянном давлении нагревают до температуры T₂, затем при постоянном объеме нагревают до температуры T₃. Далее газ охлаждают при постоянном давлении так, что его объем уменьшается до первоначального значения. Наконец, при постоянном объеме газ возвращают в первоначальное состояние. Какую работу совершил газ в этом процессе? (см. рис. 2)
- 3. Над идеальным газом массой 20 г и молярной массой 28 г/моль совершается циклический процесс. Какова работа газа за один цикл, если температуры в точках 1 и 2 равны 300 К и 496 К соответственно? При расширении газа на участке 2 3 его объем увеличивается в два раза. (см. рис. 3)
- 4. Волейбольный мяч массой 200 г и объемом 8 л накачан до избыточного давления 0,2 атм. Мяч был подброшен на высоту 20 м и после падения на твердый грунт подскочил почти на ту же высоту. Оцените максимальную температуру воздуха в мяче в момент удара о грунт. Температура наружного воздуха 300 К, теплоемкость воздуха при постоянном объеме Cv = 700 Дж/К. Атмосферное давление p₀ = 1 атм.

5. Определить количество теплоты, необходимое для перевода одного моля одноатомного идеального газа из состояния 1 в состояние 3. В состоянии 1 температура газа $T_1 = 300 \text{ K}$. (см. рис. 4)

1. Металлический шарик,

нагретый до

температуры t = 60 С, положили в стакан с водой, имеющей температуру $t_0 = 20$ С. После достижения теплового равновесия температура воды в стакане стала равной $t_1 = 30$ С. Затем шарик переложили в другой стакан с таким же количеством воды, имеющей температуру t_0 . Какая температура t_2 установится в этом стакане? Теплообменом с окружающей средой пренебречь. (отв. $22.5~^{0}$ С)

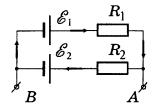
- 2. В калориметре находилось $m_1 = 400 \ \Gamma$ воды при температуре $t_1 = 5 \ C$. К ней долили еще $m_2 = 200 \Gamma$ воды при температуре $t_2 = 10 \ C$ и положили $m_3 = 400 \ \Gamma$ льда при температуре $t_3 = -60 \ C$. Какая масса льда оказалась в калориметре после установления теплового равновесия? Теплоемкостью калориметра пренебречь. (отв. 502 Γ)
- 3. Стальной шарик при свободном падении на высоте 68,75 м имел скорость 15 м/с и в результате удара о землю поднялся на высоту 0,5 м. На сколько повысилась температура шарика, если считать, что потери энергии составили 50 %? Ускорение свободного падения примите равным 10 м/с².
- 4. Определите КПД плавильной печи, в которой для нагревания 0,5 т алюминия от 282 К до температуры плавления было израсходовано 70 кг каменного угля марки A-1.
- 5. При изобарном расширении 80 г кислорода с температурой 300 К его объем увеличился в 1,5 раза. Определите количество теплоты, израсходованное на нагревание кислорода, работу, совершенную для его расширения, и изменение внутренней энергии газа.

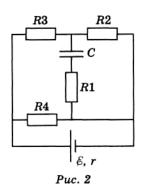
VII. Электродинамика.

Тест по теме «Электродинамика»

- 1. В каком случае вокруг движущегося электрона возникает магнитное поле?
- 1 электрон движется прямолинейно и равномерно;
- 2 электрон движется равномерно по окружности;
- 3 электрон движется равноускоренно прямолинейно.
- А. 1 Б. 2 В. 3 Г. 1 и 2 Д. 1 и 3 Е. 2 и 3 Ж. Во всех случаях
- 3. Такого случая среди вариантов нет

- 2. На проводник, помещенный в магнитное поле, действует сила 3 Н. Длина активной части проводника 60 см, сила тока 5 А. Определите модуль вектора магнитной индукции поля. А. 3Тл Б. 0,1Тл В. 1Тл Г. 6Тл Д. 100Тл
- 3. Какая физическая величина измеряется в вольтах?
- А. Индукция поля Б. Магнитный поток В. ЭДС индукции Г. Индуктивность
- 4. Частица с электрическим зарядом $8\cdot10^{-19}$ Кл движется со скоростью 220 км/ч в магнитном поле с индукцией 5 Тл, под углом 30^{0} . Определить значение силы Лоренца.
- А. $10^{-15}\,\mathrm{H}$ Б. $2\cdot10^{-14}\,\mathrm{H}$ В. $2\cdot10^{-12}\,\mathrm{H}$ Г. $1,2\cdot10^{-16}\,\mathrm{H}$ Д. $4\cdot10^{-12}\,\mathrm{H}$ Е. $1,2\cdot10^{-12}\,\mathrm{H}$
- 5. Прямолинейный проводник длиной 10 см расположен под углом 30⁰ к вектору магнитной индукции. Какова сила Ампера, действующая на проводник, при силе тока 200 мА и индукции поля 0,5 Тл?
- А. 5 мН Б. 0,5 Н В. 500 Н Г. 0,02 Н Д. 2Н
- 6. При вдвигании в катушку постоянного магнита в ней возникает электрический ток. Как называется это явление?
- А. Электростатическая индукция Б. Магнитная индукция
- В. Электромагнитная индукция Г. Самоиндукция Д. Индуктивность
- 7. Определить магнитный поток, пронизывающий поверхность, ограниченную контуром, площадью 1 м², если вертикальная составляющая индукции магнитного поля 0,005 Тл.
- А. 200 Н Б. 0,05 Вб В. 5 мФ Г. 5000 Вб Д. 0,02 Тл Е. 0,005 Вб
- 8. Сила тока, равная 1 А, создает в контуре магнитный поток в 1 Вб. Определить индуктивность контура.
- А. 1 А Б. 1 Гн В. 1 Вб Г. 1 Гн Л. 1 Ф
- 9. Какова энергия магнитного поля катушки индуктивностью, равной 2 Гн, при силе тока в ней, равной 200 мА?
- А. 400 Дж Б. $4\cdot10^4$ Дж В. 0,4 Дж Г. $8\cdot10^{-2}$ Дж Д. $4\cdot10^{-2}$ Дж
- 10. Вблизи неподвижного положительно заряженного шара обнаруживается....
- А. Электрическое поле Б. Магнитное поле В. Электромагнитное поле
- Г. Попеременно то электрическое, то магнитное поля
- 11. Определить индуктивность катушки через которую проходит поток величиной 5 Вб при силе тока 100 мА.
- А. 0.5 Гн Б. 50 Гн В. 100 Гн Г. 0,005 Гн Д. 0,1 Гн
- 12. Какова ЭДС индукции, возбуждаемая в проводнике, помещенном в магнитном поле с индукцией 100 мТл, если оно полностью исчезает за 0,1 с? Площадь, ограниченная контуром, равна 1 м^2 .

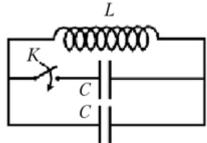

Контрольная работа по теме «Электродинамика»


2 уровень

- 1. Чему равна разность потенциалов между точками A и B см. рис. 1, если ЭДС источников равны 1,8 B и 1,3 B соответственно, а сопротивление цепи R_1 =10 Ом и R_2 =5 Ом? Внутренним сопротивлением источников пренебречь.
- 2. Электромотор включен в цепь постоянного тока напряжением $U=220~{\rm B.}$ Сопротивление обмотки мотора $R=2~{\rm Om},$ потребляемая сила тока $I=10~{\rm A.}$ Найти потребляемую мощность и КПД мотора.
- 3.. Конденсатор емкостью $C=0,1\,$ мк Φ , заряженный до напряжения $U=100\,$ В, подсоединяют к катушке индуктивностью $L=1\,$ м Γ н. Чему равна величина тока I через катушку спустя время to $=0,785\,\times\,10^{-5}\,$ с после подключения конденсатора? Сопротивлением катушки и соединительных проводов пренебречь.
- 4.. Колебательный контур состоит из катушки индуктивностью L=1 м Γ н и плоского воздушного конденсатора емкостью C=1 н Φ . Найти среднюю за период колебаний силу притяжения обкладок конденсатора друг к другу, если амплитуда тока в катушке равна I_0 =1A. Площадь обкладки конденсатора S= 0,5 м 2 .

Электрическая постоянная $\varepsilon_0 = 8.85 \ 10^{-12} \ \Phi/\text{м}$.

- 1. Найти внутреннее сопротивление и ЭДС источника тока, если при силе тока 30 A мощность во внешней цепи равна 180 Вт, а при силе тока 10A эта мощность равна 100 Вт.?
- 2. Определить заряд на конденсаторе (рис.2), если $R_1 = R_2 = R_3 = R_4 = 20$ Ом, $\varepsilon = 500$ В, r = 10 Ом и C = 10 мкФ.
- 3. Электрический чайник имеет два нагревательных элемента. При включении одного из них вода в чайнике закипает за 15 мин, при включении другого за 30 мин. Через какое время закипит вода в чайнике, если включить оба элемента: последовательно, параллельно?



28

- 4. В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности равна 5 мА, а амплитуда напряжения на конденсаторе равна 2,0 В. В некоторый момент времени сила тока в катушке равна 3 мА. Найдите напряжение на конденсаторе в этот момент.
- 5. Заряженный конденсатор подключили к катушке, в результате чего в цепи возникли гармонические колебания. В момент, когда напряжение на конденсаторе обратилось в нуль, к нему с помощью ключа К подсоединили ещё один такой же конденсатор. Во сколько раз изменились амплитуды колебаний тока и напряжения на катушке после этого?

Рисунок 1

VIII. Зачет

Использование вариантов тренировочных контрольных работ в формате ЕГЭ на сайте http://phys.reshuege.ru/ Авторы задач для подготовки к ЕГЭ: А. В. Берков, С. Б. Бобошина, В. А. Грибов, О. Ф. Кабардин, С. И. Кабардина, В. А. Орлов; материалы сайта http://ege.yandex.ru.

Список литературы

1.ЕГЭ-2012. Физика: сборник экзаменационных заданий. Федеральный банк экзаменационных материалов / ФИПИ авторы-составители: М.Ю. Демидова, И.И. Нурминский – М.: Эксмо, 2012.

2. Единый государственный экзамен 2012. Физика. Универсальные материалы для подготовки учащихся/ ФИПИ авторы-составители: М.Ю. Демидова, Г. Г. Никифоров, В. А. Орлов, Н. К. Ханнанов – М.: Интеллект-Центр, 2012.

3. Самое полное издание типовых вариантов реальных заданий ЕГЭ. 2012. Физика/ ФИПИ авторы составители: А. В. Берков, В.А. Грибов- М.: Астрель, 2012.

4.ЕГЭ-2013: Физика / ФИПИ авторы-составители: А.В. Берков, В.А.Грибов – М.: Астрель, 2013.

Интернет-ресурсы

http://www.fipi.ru- Материалы сайта ФИПИ www.fizportal.ru/ Физический портал www.class-fizika.narod.ru Классная физика

http://school-collection.edu.ru/- Единая коллекция Цифровых Образовательных Ресурсов. http://www.afportal.ru/physics/test/online/termo4

Используемые ресурсы

http://pedsovet.su/load/73-1-0-30417

http://edu.of.ru/svb/default.asp?ob_no=72028

http://knowledge.allbest.ru/pedagogics/d-3c0b65635a3bd68b4c53a89421206d27.html

 $\underline{http://knowledge.allbest.ru/pedagogics/d-2c0b65625a3ad78b4d43b8952130}6d26.html$

http://physics-school.narod.ru/TenthClass.htm

http://phys.reshuege.ru/